61,789 research outputs found

    BRST Analysis of Physical Fields and States for 4D Quantum Gravity on R x S^3

    Full text link
    We consider the background-free quantum gravity based on conformal gravity with the Riegert-Wess-Zumino action, which is formulated in terms of a conformal field theory. Employing the RĂ—S3R \times S^3 background in practice, we construct the nilpotent BRST operator imposing diffeomorphism invariance. Physical fields and states are analyzed, which are given only by real primary scalars with a definite conformal weight. With attention to the presence of background charges, various significant properties, such as the state-operator correspondence and the norm structure, are clarified with some examples.Comment: 29 pages, several descriptions written using CFT terminology are adde

    Large-Scale Simulation of Beam Dynamics in High Intensity Ion Linacs Using Parallel Supercomputers

    Get PDF
    In this paper we present results of using parallel supercomputers to simulate beam dynamics in next-generation high intensity ion linacs. Our approach uses a three-dimensional space charge calculation with six types of boundary conditions. The simulations use a hybrid approach involving transfer maps to treat externally applied fields (including rf cavities) and parallel particle-in-cell techniques to treat the space-charge fields. The large-scale simulation results presented here represent a three order of magnitude improvement in simulation capability, in terms of problem size and speed of execution, compared with typical two-dimensional serial simulations. Specific examples will be presented, including simulation of the spallation neutron source (SNS) linac and the Low Energy Demonstrator Accelerator (LEDA) beam halo experiment

    Weak Factorizations of the Hardy space H1(Rn)H^1(\mathbb{R}^n) in terms of Multilinear Riesz Transforms

    Get PDF
    This paper provides a constructive proof of the weak factorizations of the classical Hardy space H1(Rn)H^1(\mathbb{R}^n) in terms of multilinear Riesz transforms. As a direct application, we obtain a new proof of the characterization of BMO(Rn){\rm BMO}(\mathbb{R}^n) (the dual of H1(Rn)H^1(\mathbb{R}^n)) via commutators of the multilinear Riesz transforms.Comment: improved some typo

    Manipulating Majorana fermions in one-dimensional spin-orbit coupled atomic Fermi gases

    Full text link
    Majorana fermions are promising candidates for storing and processing information in topological quantum computation. The ability to control such individual information carriers in trapped ultracold atomic Fermi gases is a novel theme in quantum information science. However, fermionic atoms are neutral and thus are difficult to manipulate. Here, we theoretically investigate the control of emergent Majorana fermions in one-dimensional spin-orbit coupled atomic Fermi gases. We discuss (i) how to move Majorana fermions by increasing or decreasing an effective Zeeman field, which acts like a solid state control voltage gate; and (ii) how to create a pair of Majorana fermions by adding a magnetic impurity potential. We discuss the experimental realization of our control scheme in an ultracold Fermi gas of 40^{40}K atoms.Comment: 4 papges, 6 figure

    Human environmental heat transfer simulation with CFD – the advances and challenges

    Get PDF
    The modelling and prediction of human thermoregulatory responses and comfort have gone a long way during the past decades. Sophisticated and detailed human models, i.e. the active multi-nodal thermal models with physiological regulatory responses, have been developed and widely adopted in both research and industrial practice. The recent trend is to integrate human models with environmental models in order to provide more insight into the thermal comfort issues, especially in the non-homogeneous and transient conditions. This paper reviews the logics and expectations of coupling human models with computational fluid dynamics (CFD) models. One of main objectives of such approaches is to take the advantage of the high resolution achievable with the CFD, to replace the empirical methods used in the human models. We aim to initiate debates on the validity of this objective, and to identify the technical requirements for achieving this goal. A simple experiment with 3D human models of different sizes and shapes is also reported. Initial results shows the presence of arms may be important. Further experiments are required to establish the impact of size and shape on simulation result

    A super-ductile alloy for the die-casting of aluminium automotive body structural components

    Get PDF
    Super-ductile die-cast aluminium alloys are critical to future light-weighting of automotive body structures. This paper introduces a die-cast aluminium alloy that can satisfy the requirements of these applications. After a review of currently available alloys, the requirement of a die-cast aluminium alloy for automotive body structural parts is proposed and an Al-Mg-Si system is suggested. The effect of the alloying elements, in the composition, has been investigated on the microstructure and mechanical properties, in particular the yield strength, the ultimate tensile strength and elongation. © (2014) Trans Tech Publications, Switzerland.The EPSRC and JLR U

    BRST Invariant Higher Derivative Operators in 4D Quantum Gravity based on CFT

    Full text link
    We continue the study of physical fields for the background free 4D quantum gravity based on the Riegert-Wess-Zumino action, developed in Phys. Rev. D {\bf 85} (2012) 024028. The background free model is formulated in terms of a certain conformal field theory on M^4 in which conformal symmetry arises as gauge symmetry, namely diffeomorphism invariance. In this paper, we construct the physical field operator corresponding to any integer power of Ricci scalar curvature in the context of the BRST quantization. We also discuss how to define the correlation function and its physical meanings.Comment: 22 pages, minor typo corrected, published versio
    • …
    corecore